[1] ZHENG C, WU Z, FENG J, et al. MNRE: A Challenge
Multimodal Dataset for Neural Relation Extraction with
Visual Evidence in Social Media Posts[C]//2021 IEEE
International Conference on Multimedia and Expo
(ICME). IEEE, 2021: 1-6.
[2] 孙紫阳, 顾君忠, 杨静. 基于深度学习的中文实体关系
抽取方法[J]. 计算机工程, 2018, 44(9): 164-170.
SUN ZIYANG, GU JUNZHONG, YANG JING. Chinese
Entity Relation Extraction Method Based on DeepLearning[J]. Computer Engineering, 2018, 44(9):
164-170.
[3] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综
述[J]. 计算机研究与发展, 2020, 57(07): 1424-1448.
LI D, ZHANG Y, L D, et al. Review of Entity Relation
Extraction Methods [J]. Review of Entity Relation
Extraction Methods, 2020, 57(07): 1424-1448.
[4] MOONEY R. Relational Learning of Pattern-Match Rules
for Information Extraction[C]//Proceedings of the
sixteenth national conference on artificial intelligence.
1999, 328: 334.
[5] HUFFMAN S B. Learning Information Extraction
Patterns from Examples[C]//International Joint
Conference on Artificial Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995: 246-260.
[6] ZHANG Y, ZHONG V, CHEN D, et al. Position-aware
Attention and Supervised Data Improve Slot
Filling[C]//Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 2017:
35-45.
[7] GUO Z, NAN G, LU W, et al. Learning Latent Forests for
Medical Relation Extraction[C]//Proceedings of the
Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence. 2021:
3651-3657.
[8] KENTON J D M W C, TOUTANOVA L K. BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding[C]//Proceedings of naacL-HLT.
2019, 1: 2.
[9] LI J, WANG R, ZHANG N, et al. Logic-guided Semantic
Representation Learning for Zero-Shot Relation
Classification[C]//Proceedings of the 28th International
Conference on Computational Linguistics. 2020:
2967-2978.
[10] ZENG D, LIU K, CHEN Y, et al. Distant Supervision for
Relation Extraction Via Piecewise Convolutional Neural
Networks[C]//Proceedings of the 2015 conference on
empirical methods in natural language processing. 2015:
1753-1762.
[11] SOARES L B, FITZGERALD N, LING J, et al. Matching
the Blanks: Distributional Similarity for Relation
Learning[C]//Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. 2019:
2895-2905.
[12] ZHENG C, FENG J, FU Z, et al. Multimodal Relation
Extraction with Efficient Graph
Alignment[C]//Proceedings of the 29th ACM International
Conference on Multimedia. 2021: 5298-5306.
[13] ZHENG C, FENG J, FU Z, et al. Multimodal Relation
Extraction with Efficient Graph
Alignment[C]//Proceedings of the 29th ACM International
Conference on Multimedia. 2021: 5298-5306.
[14] CHEN X, ZHANG N, LI L, et al. Good Visual Guidance
Make A Better Extractor: Hierarchical Visual Prefix for
Multimodal Entity and Relation Extraction[C]//Findings
of the Association for Computational Linguistics: NAACL
2022. 2022: 1607-1618.
[15] 吴海鹏, 钱育蓉, 冷洪勇. 基于双向注意力机制的多模
态关系抽取[J]. 计算机工程, 2024, 50(4): 160-167.
WU HAIPENG, QIAN YURONG, LENG HONGYONG.
Multimodal Relation Extraction Based on Bidirectional
Attention Mechanism[J]. Computer Engineering, 2024,
50(4): 160-167.
[16] XU B, HUANG S, DU M, et al. A Unified Visual Prompt
Tuning Framework with Mixture-of-Experts for
Multimodal Information Extraction[C]//International
Conference on Database Systems for Advanced
Applications. Cham: Springer Nature Switzerland, 2023:
544-554.
[17] CUI S, CAO J, CONG X, et al. Enhancing Multimodal
Entity and Relation Extraction With Variational
Information Bottleneck[J]. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2024, 32:
1274-1285.
[18] BROWN T B, MANN B, RYDER N, et al. Language
Models are few-shot learners[C]//Proceedings of the 34th
International Conference on Neural Information
Processing Systems. 2020: 1877-1901.
[19] BEN-DAVID E, OVED N, REICHART R. PADA:
Example-based Prompt Learning for on-the-fly
Adaptation to Unseen Domains[J]. Transactions of the
Association for Computational Linguistics, 2022, 10:
414-433.
[20] HU S, DING N, WANG H, et al. Knowledgeable
Prompt-tuning: Incorporating Knowledge into Prompt
Verbalizer for Text Classification[C]//Proceedings of the
60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2022:
2225-2240.
[21] DING N, CHEN Y, HAN X, et al. Prompt-learning forFine-grained Entity Typing[C]//Findings of the
Association for Computational Linguistics: EMNLP 2022.
2022: 6888-6901.
[22] GAO T, FISCH A, CHEN D. Making Pre-trained
Language Models Better Few-shot
Learners[C]//Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 2021: 3816-3830.
[23] SCHICK T, SCHMID H, SCHÜTZE H. Automatically
Identifying Words That Can Serve as Labels for Few-Shot
Text Classification[C]//Proceedings of the 28th
International Conference on Computational Linguistics.
2020: 5569-5578.
[24] SHIN T, RAZEGHI Y, LOGAN IV R L, et al. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts[C]//Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2020: 4222-4235.
[25] HAMBARDZUMYAN K, KHACHATRIAN H, MAY J.
WARP: Word-level adversarial
reprogramming[C]//ACL-IJCNLP 2021-59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing, Proceedings of the Conference.
2021: 4921-4933.
[26] LIU Z, LIN Y, CAO Y, et al. Swin transformer:
Hierarchical vision transformer using shifted
windows[C]//Proceedings of the IEEE/CVF international
conference on computer vision. 2021: 10012-10022.
[27] LIU Z, LIN Y, CAO Y, et al. Swin transformer:
Hierarchical vision transformer using shifted
windows[C]//Proceedings of the IEEE/CVF international
conference on computer vision. 2021: 10012-10022.
[28] YANG Z, GONG B, WANG L, et al. A Fast and Accurate
One-Stage Approach to Visual Grounding[C]//2019
IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE Computer Society, 2019: 4682-4692.
[29] LU D, NEVES L, CARVALHO V, et al. Visual Attention
Aodel for Name Tagging in Multimodal Social
Media[C]//Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers). 2018: 1990-1999.
[30] LI J, SUN A, HAN J, et al. A Survey on Deep Learning for
Named Entity Recognition[J]. IEEE Transactions on
Knowledge and Data Engineering, 2022, 34(1): 50-70.
[31] ZHONG Z, CHEN D. A Frustratingly Easy Approach for
Entity and Relation Extraction[C]//Proceedings of the
2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. 2021: 50-61.
[32] YU J, JIANG J, YANG L, et al. Improving Multimodal
Named Entity Recognition via Entity Span Detection with
Unified Multimodal Transformer[C]//Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics. 2020: 3342-3352.
[33] ZHANG D, WEI S, LI S, et al. Multi-modal Graph Fusion
for Named Entity Recognition with Targeted Visual
Guidance[C]//Proceedings of the AAAI conference on
artificial intelligence. 2021, 35(16): 14347-14355.
[34] LI L H, YATSKAR M, YIN D, et al. VisualBERT: A
Simple and Performant Baseline for Vision and Language
[J]. arXiv preprint arXiv:1908.03557, 2019.
[35] HE X, LI S, ZHANG Y, et al. The more quality
information the better: Hierarchical generation of
multi-evidence alignment and fusion model for
multimodal entity and relation extraction[J]. Information
Processing & Management, 2025, 62(1): 103875.
|